Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Genet ; 25(4): 237-254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291236

RESUMO

To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bactérias/genética , Bacteriófagos/genética
2.
Nature ; 623(7987): 601-607, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853129

RESUMO

Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids1. In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity2,3. Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units4. We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes5. Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications6.


Assuntos
Bactérias , Bacteriófagos , Sistemas CRISPR-Cas , Mimetismo Molecular , RNA Viral , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Biotecnologia/métodos , Biotecnologia/tendências , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Plasmídeos/genética , Prófagos/genética , Prófagos/imunologia , RNA Viral/genética
3.
Cell Rep ; 42(7): 112672, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37347666

RESUMO

Prokaryotic adaptation is strongly influenced by the horizontal acquisition of beneficial traits via mobile genetic elements (MGEs), such as viruses/bacteriophages and plasmids. However, MGEs can also impose a fitness cost due to their often parasitic nature and differing evolutionary trajectories. In response, prokaryotes have evolved diverse immune mechanisms against MGEs. Recently, our understanding of the abundance and diversity of prokaryotic immune systems has greatly expanded. These defense systems can degrade the invading genetic material, inhibit genome replication, or trigger abortive infection, leading to population protection. In this review, we highlight these strategies, focusing on the most recent discoveries. The study of prokaryotic defenses not only sheds light on microbial evolution but also uncovers novel enzymatic activities with promising biotechnological applications.


Assuntos
Bacteriófagos , Células Procarióticas , Plasmídeos , Bacteriófagos/genética , Genoma , Sequências Repetitivas Dispersas/genética
4.
Mol Cell ; 82(23): 4471-4486.e9, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395770

RESUMO

Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Núcleo Celular , Cromossomos Bacterianos , Endonucleases , RNA Mensageiro
5.
Nucleic Acids Res ; 50(8): 4315-4328, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606604

RESUMO

Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.


Assuntos
Archaea , Sistemas CRISPR-Cas , Archaea/genética , Bactérias/genética , Plasmídeos/genética , Células Procarióticas
6.
CRISPR J ; 3(6): 462-469, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33275853

RESUMO

Automated classification of CRISPR-Cas systems has been challenged by their dynamic nature and expanding classification. Here, we developed CRISPRCasTyper, an automated tool with improved capabilities for identifying and typing CRISPR arrays and cas loci based on the latest nomenclature (44 subtypes/variants). As a novel feature, CRISPRCasTyper uses a machine learning approach to subtype CRISPR arrays based on the sequences of the repeats, which allows the typing of orphan and distant arrays. CRISPRCasTyper provides a graphical output, where CRISPRs and cas operons are visualized as gene maps, thus aiding annotation of partial and novel systems through synteny. CRISPRCasTyper was benchmarked against a manually curated set of 31 subtypes with a median accuracy of 98.6% and used to explore CRISPR-Cas diversity across >3,000 metagenomes. Altogether, we present an up-to-date software for improved automated prediction of CRISPR-Cas loci. CRISPRCasTyper is available through conda and as a web server (cctyper.crispr.dk).


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/classificação , Edição de Genes/métodos , Archaea/genética , Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/tendências , Genoma Bacteriano/genética , Metagenoma/genética , Filogenia , RNA Guia de Cinetoplastídeos/genética , Software
7.
Trends Microbiol ; 28(11): 913-921, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32499102

RESUMO

Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas immune systems. To date, Acrs inhibiting types I, II, III, V, and VI CRISPR-Cas systems have been characterized. While most known Acrs are derived from bacterial phages and prophages, very few have been characterized in the domain Archaea, despite the nearly ubiquitous presence of CRISPR-Cas in archaeal cells. Here we summarize the discovery and characterization of the archaeal Acrs with the representatives encoded by a model archaeal virus, Sulfolobus islandicus rod-shaped virus 2 (SIRV2). AcrID1 inhibits subtype I-D CRISPR-Cas immunity through direct interaction with the large subunit Cas10d of the effector complex, and AcrIIIB1 inhibits subtype III-B CRISPR-Cas immunity through a mechanism interfering with middle/late gene targeting. Future development of efficient screening methods will be key to uncovering the diversity of archaeal Acrs.


Assuntos
Archaea/imunologia , Proteínas Arqueais/imunologia , Vírus de Archaea/fisiologia , Sistemas CRISPR-Cas , Rudiviridae/fisiologia , Archaea/genética , Archaea/virologia , Proteínas Arqueais/genética , Vírus de Archaea/genética , Rudiviridae/genética
8.
Nucleic Acids Res ; 48(4): 2000-2012, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31879772

RESUMO

CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Evolução Molecular , Plasmídeos/genética , Archaea/genética , Bactérias/genética
9.
Viruses ; 10(12)2018 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-30544778

RESUMO

Genetic engineering of viruses has generally been challenging. This is also true for archaeal rod-shaped viruses, which carry linear double-stranded DNA genomes with hairpin ends. In this paper, we describe two different genome editing approaches to mutate the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) using the archaeon Sulfolobus islandicus LAL14/1 and its derivatives as hosts. The anti-CRISPR (Acr) gene acrID1, which inhibits CRISPR-Cas subtype I-D immunity, was first used as a selection marker to knock out genes from SIRV2M, an acrID1-null mutant of SIRV2. Moreover, we harnessed the endogenous CRISPR-Cas systems of the host to knock out the accessory genes consecutively, which resulted in a genome comprised solely of core genes of the 11 SIRV members. Furthermore, infection of this series of knockout mutants in the CRISPR-null host of LAL14/1 (Δarrays) confirmed the non-essentiality of the deleted genes and all except the last deletion mutant propagated as efficiently as the WT SIRV2. This suggested that the last gene deleted, SIRV2 gp37, is important for the efficient viral propagation. The generated viral mutants will be useful for future functional studies including searching for new Acrs and the approaches described in this case are applicable to other viruses.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Rudiviridae/genética , Sulfolobus/virologia , DNA Viral/genética , Técnicas de Inativação de Genes , Genoma Viral , Mutação , Reação em Cadeia da Polimerase , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Methods Mol Biol ; 1838: 97-108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128992

RESUMO

Despite the important role of the microbiota in the human gastrointestinal tract (GIT) and its impact on life-long health, the successional process through which this microbial community develops during infancy is still poorly understood. Specially, little is known about how the amount and type of viruses present in the GIT, i.e., the virome, varies throughout this period and about the role this collection of viruses may play in the assembly of the GIT microbiota.The patterns of taxonomic change of the GIT viral community can be analyzed in a birth cohort of infants during the first year of life. The present chapter presents a detailed protocol for the isolation and extraction of viral nucleic acids from collected human faecal samples, whole genome amplification (WGA) using phi29 DNA polymerase and preparation for sequencing through high-throughput 454 pyrosequencing. The sequencing data can be posteriorly used for taxonomic classification in order to establish the composition of the virome present in each sample and to assess the process of viral dynamics through time.


Assuntos
Fezes/virologia , Microbioma Gastrointestinal , Genoma Viral , Metagenoma , Metagenômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...